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EXTENSION OF THE CHAPMAN-ENSKOG METHOD
TO GAS MIXTURES WITH INTERNAL DEGREES
OF FREEDOM AND CHEMICAL REACTIONS

S. V. Vallander, I. A. Yegorova,
M. A. Rydalevskaya

ABSTRACT

The conclusions set forth in the present study provide
a generalization of the Chapman-Enskog Method; this general-
ization makes it possible to study gas mixtures with internal
degrees of freedom and chemical reactions.

The study differs from works which have been published
recently (Ref 1, Ref 2, and Ref 3) in two ways:

(1) A study is made of gas mixtures in which chemical
exchange reactions can occur (i.e., when two particles coll-
ide, two and only two particles are produced);

(2) A different system of macroscopic parameters is
selected, by which the distribution functions are represen-
ted; in this connection, new macroscopic equations for
determining these parameters are developed.

The point of departure for our study is Ref. 4 and Ref. 5.
From the former, we derive an expression for the collision
integral; from the latter, we obtain the form for the equi-
librium solution of the corresponding system of Boltzmann
equations. The notations from Ref. 4, Ref. 5 and Ref. 6
will be used in the article.



1. ZERO APPROXIMATION. SEPARATION OF D;f;

Let us write the system of Boltzmann equations in the form *:
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According to Enskog, we can set f; = &EO f£m2 where each approximation

f§m) is determined from the linear integral equation:
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The zero approximation of the distribution function is obtained from
equation (1.2) in the form:
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where J; is the average internal moment of the itb particle for the given
state. The coefficients a, #y, ... , up, ¢and 7 are arbitrary functions of
r and t. Just as in (Ref. 5), we selected them in such a way that they
could be determined from (r + 8) balance equations:
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* Just as in (Ref. 5), the principle of detailed balance is assumed
to hold here.
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SO, u, Hdu=1, (1.8)
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Here IO(rz ;) is the total internal moment. We determine the concrete
m
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form of D in order to obtain the following approximations. To do
this, we make use of the transport equation:
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Here Uj =731.f UfidU is the diffusion current vector of the ith component;
-w 1
~ - 2
RA — § niniUi is the current vector of A-type atoms; Eg = E - o Puy is
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the total "self" energy of the system; q =Y qi =Y ‘f fi<§miU2 + fi>UdU
i %-o00
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is the heat flux vector; P =Y P; = ¥ f mi-ﬁ-ﬁfidU is the stress tensor;
i i ~e0
— - +00
M= XM = X niJiﬁi = ¥ Ji J. U£1dU is the transport tensor of the
i i i ~ 00

internal moment.

Equations (1.11) for N, (number of A-type atoms) usually replace the
diffusion equations being examined. Their occurrence is connected with the
« invariants K,j. It can be readily seen that the equations for N, are
simpler than the diffusion equations which are normally used, because the
right hand sections are equal to zero. 1In addition, the number of these
equations is less than the number of diffusion equations (s > r), generally

speaking.
When the NA are found, then the n; are readily determined with f§0?
If Ng, Ny, ... , Ny, E, Iox, Ioys Ioz are considered as independent var-
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ables Xg, X1, +++ 5 Xyy4, and &, M1, ... , My, T, vx, vy, vz are considered
as functions yo, Y1, --- , Yr+4 of these variables, then the system of
equations (1.5) - (1.8) can be written in the form:

Fj (%o eees Koo Yoo ooe o Ypp) =0, j=0,..., 7 +4, (1.15)

and the system of transport equations (1.10) - (1.14) can be written in the
form:
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In equations (1.16) - (1.17) we divide the time derivatives in parts

I} Jd1i
ot at at Tt

where all 92_ are not derivatives, but operators, whose effect is given b
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the following relationships:
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Here all Qém) and ﬁ(m) are determined just as in (Ref. 6), only using f§m).

According to Enskog, in each approximation we obtain the equations:
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It can be shown that (1.22) is a system of integral equations, a
Fredholm equation with symmetrical kernels.

2. DISTRIBUTION FUNCTION AND CURRENT
FUNCTION IN THE FIRST APPROXIMATION.

For the first approximation, we have the equations:

4 -
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In the right part of equation (2.1) let us change to eigen velocities. Uti-
lizing the fact that £{0) = £{o)(y_, ... , ypy4, U), we can write:
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Dt = dy: Dt '
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and in turn
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Determining — = from the system (1.15) and substituting from (1.18),
an Dt

we obtain the following equations for the distribution function in the
first approximation:
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From (2.2 we obtain the following form of the distribution function:

r ’
171 Y
,Sl)-_—_: e.\:p{ E Ky iy — Ef'—(_f m;U2 -+ t,) +VJ,-} [1 - E A (r, U, t).—()-r—k-_.
A=l OF k=0

olse 1oy sz

—AL s or — ALt or T AL o T AL reat or

r
—_ au , -
—Bi(r U, 952 o)+ ) Kyp® + 3P U+

A=l
-> 1
+vm-J,+usl)(-—§—m1Uz—’_—z,) , i=1,...,8. (2.3)
Here the coefficients Ajyx(r, U, t)(k=0, ..., r+4) and Bz(r, U, t)

represent particular solutions of the following systems of integral
equations:
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is designated by A in expressions (2.2)-(2.4). The determinant A£j) is
obtained from the determinant A, if the jth line is replaced by:
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and Aj,r'!'

column of the determinant A.

1 is the algebraic complement of the th line and of the (r+1)Lb
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p is the hydrostatic pressure. Systems (2.4)-(2.5) are systems of integral
Fredholm equations with symmetrical kernels, and the conditions of solvability
are fulfilled for them. Thus A;j and Bi, in the particular case of an iso-
tropic mixture, are given in the form: *

- .
Ajj=Ay(U)U, B;=B8,(U)UL.

The coefficients afl), #§1) (A=1, ..., 1) aél), and a3(l) are
determined from equations (2.6) and (2.7):
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The heat flux, mass flux, and the stress tensor are given by the
following expressions to the first approximation:

* If I, £ 0, then Ajj and Bi have a more complex form. 1In this connection,
supplementary terms appear in the expressions for the fluxes.
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Here wu 1is the coefficie
of dilatational viscosity.
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e of internal degrees of freedom in formulas
of the internal moment of momentum is:
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f chemical reactions, the vector currents of
be easily examined:

(2.12)




Substituting the expressions for the fluxes, (2.8), (2.9), (2.10), (2.11),
and (2.12), in the transport equations, we can write the equations of
hydrodynamics which correspond to the first approximation of the distri-
bution function. If several new notations are introduced, the hydrodynamic
equation system will take the following form:

D“o a -+ 6 -> )
P Dt +dx tx-l—ay‘:y-f-az T, =0,
DE D 4 O 7 Gl - O
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The system of equations (2.13) is closed, since
r= Y m | AOa=Fima,
i —- A
+ -
p=3 § sPmptas st
} —-—=-
because T is a function of Ny, N,, ... , Ny and E, and all the coefficients

ks 8, A\ and L;y, prove to be functions of Ny, Ny, ... , N. and E in the
lasct analysis.



3. MIXTURE WITHOUT CHEMICAL REACTION

In the absence of chemical reactions, not only a number of atoms of
each type survive the collisions, but also chemical types of colliding mole-
cules. TIn connection with this, new additive collision invariants appear,
which make it possible to greatly simplify the method given above for
solving the problem.

The conservation law for a chemical type can be written as follows:

GiehiF+ (ig)n = (o) + (aj;q)l. (3.1)

Here §;; is the Christoffel symbol, i, nﬁhk anghl are the indexes for the
internai state of the molecules of the j=, j,—, j';h chemical types res-

pectively, and t is the number of chemical types of the mixture.

Tt can be seen from equation (3.1) that the identity element and Kki
(x=1, ... , r) are linearly-dependent on the invariants 5iq'

The case of an isotropic mixture (Jij = 0, I = 0) without chemical
reactions was studied in the works ( Ref." 2 and Ref. 3 ); it is true that
this is somewhat different from the above division of the operator
Dgl)fi into linearly-independent parts. It can be shown that the appear-
ance of the Eucken correction in the thermal conductivity coefficient and
the dilatational viscosity in the stress tensor is connected with the

internal degrees of freedom and chemical reactions.
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